Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatol Commun ; 8(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38466881

RESUMO

BACKGROUND: Autoimmune hepatitis (AIH) is an immune-mediated liver disease of unknown etiology accompanied by intestinal dysbiosis and a damaged intestinal barrier. Berberine (BBR) is a traditional antibacterial medicine that has a variety of pharmacological properties. It has been reported that BBR alleviates AIH, but relevant mechanisms remain to be fully explored. METHODS: BBR was orally administered at doses of 100 mg⋅kg-1⋅d-1 for 7 days to mice before concanavalin A-induced AIH model establishment. Histopathological, immunohistochemical, immunofluorescence, western blotting, ELISA, 16S rRNA analysis, flow cytometry, real-time quantitative PCR, and fecal microbiota transplantation studies were performed to ascertain BBR effects and mechanisms in AIH mice. RESULTS: We found that liver necrosis and apoptosis were decreased upon BBR administration; the levels of serum transaminase, serum lipopolysaccharide, liver proinflammatory factors TNF-α, interferon-γ, IL-1ß, and IL-17A, and the proportion of Th17 cells in spleen cells were all reduced, while the anti-inflammatory factor IL-10 and regulatory T cell proportions were increased. Moreover, BBR treatment increased beneficial and reduced harmful bacteria in the gut. BBR also strengthened ileal barrier function by increasing the expression of the tight junction proteins zonula occludens-1 and occludin, thereby blocking lipopolysaccharide translocation, preventing lipopolysaccharide/toll-like receptor 4 (TLR4)/ NF-κB pathway activation, and inhibiting inflammatory factor production in the liver. Fecal microbiota transplantation from BBR to model mice also showed that BBR potentially alleviated AIH by altering the gut microbiota. CONCLUSIONS: BBR alleviated concanavalin A-induced AIH by modulating the gut microbiota and related immune regulation. These results shed more light on potential BBR therapeutic strategies for AIH.


Assuntos
Berberina , Microbioma Gastrointestinal , Hepatite A , Hepatite Autoimune , Camundongos , Animais , Hepatite Autoimune/tratamento farmacológico , Hepatite Autoimune/etiologia , Berberina/farmacologia , Berberina/uso terapêutico , Concanavalina A/farmacologia , Lipopolissacarídeos/farmacologia , RNA Ribossômico 16S
2.
Biomed Pharmacother ; 172: 116223, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325266

RESUMO

Trichinella spiralis is recognized for its ability to regulate host immune responses. The serine protease inhibitor of T. spiralis (Ts-SPI) participates in T. spiralis-mediated immunoregulatory effects. Studies have shown that helminth therapy exhibits therapeutic effects on metabolic diseases. In addition, we previously found that T. spiralis-derived crude antigens could alleviate diet-induced obesity. Thus, Ts-SPI was hypothesized to alleviate non-alcoholic fatty liver disease (NAFLD). Herein, recombinant Ts-SPI (rTs-SPI) was prepared from the muscle larvae T. spiralis. The relative molecular mass of rTs-SPI was approximately 35,000 Da, and western blot analysis indicated good immunoreactivity. rTs-SPI ameliorated hepatic steatosis, inflammation, and pyroptosis in NAFLD mice, which validated the hypothesis. rTs-SPI also reduced macrophage infiltration, significantly expanded Foxp3+ Treg population, and inactivated TLR4/NF-κB/NLRP3 signaling in the liver. Furthermore, rTs-SPI treatment significantly shifted the gut microbiome structure, with a remarkable increase in beneficial bacteria and reduction in harmful bacteria to improve gut barrier integrity. Finally, Abx-treated mice and FMT confirmed that gut-liver crosstalk contributed to NAFLD improvement after rTs-SPI treatment. Taken together, Taken together, these findings suggest that rTs-SPI exerts therapeutic effects in NAFLD via anti-inflammatory activity and gut-liver crosstalk.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Serpinas , Trichinella spiralis , Animais , Camundongos , Inibidores de Serino Proteinase , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Músculos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
3.
ACS Pharmacol Transl Sci ; 7(2): 432-444, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38357280

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is a liver disease characterized by hepatic steatosis, inflammation, and fibrosis, as well as gut dysbiosis. No approved effective therapeutic medicine is available to date for NAFLD. Helminth therapy is believed to be a novel direction and therapeutic strategy for NAFLD. Our previous study showed that Trichinella spiralis-derived antigens (TsAg) had the potential for partially alleviating obesity via regulating gut microbiota. However, the effect of TsAg on NAFLD remains unclear. In this study, high-fat diet (HFD)-induced model mice were treated with TsAg and microbiota transplantation experiments, and alterations in the pathogenesis of nonalcoholic liver disease were assessed. The results showed that TsAg markedly reduced hepatic steatosis, improved insulin resistance, and regulated the abnormal expression of hepatic lipid-related genes. Of note, TsAg ameliorated hepatic inflammation by decreasing pro-inflammatory TNF-α and IL-1ß, suppressing hepatic macrophage infiltration, as well as promoting M2 macrophage polarization. Moreover, TsAg reversed gut dysbiosis, as especially indicated by an increase in beneficial bacteria (e.g., Akkermansiaceae and Rikenellaceae). Furthermore, our study found that TsAg reduced LPS hepatic translocation and hepatic TLR4/NF-κB signaling, which further contributed to inhibiting hepatic inflammation. In addition, TsAg inhibited hepatic oxidative stress involving Nrf2/NQO-1 signaling. Microbiota transplantation showed that TsAg-altered microbiota is sufficient to confer protection against NAFLD in HFD-induced mice. Overall, these findings suggest that TsAg involving gut-liver axis and Nrf2/NQO-1 signaling is a novel promising candidate for NAFLD treatment. TsAg restores intestinal microbiota and intestinal barrier to inhibit bacteria and LPS translocation into the liver, contributing to reduce inflammation, oxidative stress, and hepatic steatosis in the liver of NAFLD mice. The effects were attributed to, at least in part, the inactivation of NF-κB pathway and the activation of Nrf-2/NQO-1 pathway. This study provides new insights for understanding immune modulation by T. spiralis-derived products as well as the potential application of TsAg as a modality for NAFLD.

4.
mSystems ; 8(2): e0112722, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36794950

RESUMO

Autoimmune hepatitis (AIH) is a liver disease characterized by chronic liver inflammation. The intestinal barrier and microbiome play critical roles in AIH progression. AIH treatment remains challenging because first-line drugs have limited efficacy and many side effects. Thus, there is growing interest in developing synbiotic therapies. This study investigated the effects of a novel synbiotic in an AIH mouse model. We found that this synbiotic (Syn) ameliorated liver injury and improved liver function by reducing hepatic inflammation and pyroptosis. The Syn reversed gut dysbiosis, as indicated by an increase in beneficial bacteria (e.g., Rikenella and Alistipes) and a decrease in potentially harmful bacteria (e.g., Escherichia-Shigella) and lipopolysaccharide (LPS)-bearing Gram-negative bacterial levels. The Syn maintained intestinal barrier integrity, reduced LPS, and inhibited the TLR4/NF-κB and NLRP3/Caspase-1 signaling pathway. In addition, microbiome phenotype prediction by BugBase and bacterial functional potential prediction using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed that Syn improved gut microbiota function involving inflammatory injury, metabolism, immune response, and pathopoiesia. Furthermore, the new Syn was as effective as prednisone against AIH. Therefore, this novel Syn could be a candidate drug for alleviating AIH through its anti-inflammatory and antipyroptosis properties that relieve endothelial dysfunction and gut dysbiosis. IMPORTANCE Synbiotics can ameliorate liver injury and improve liver function by reducing hepatic inflammation and pyroptosis. Our data indicate that our new Syn not only reverses gut dysbiosis by increasing beneficial bacteria and decreasing lipopolysaccharide (LPS)-bearing Gram-negative bacteria but also maintains intestinal barrier integrity. Thus, its mechanism might be associated with modulating gut microbiota composition and intestinal barrier function by inhibiting the TLR4/NF-κB/NLRP3/pyroptosis signaling pathway in the liver. This Syn is as effective as prednisone in treating AIH without side effects. Based on these findings, this novel Syn represents a potential therapeutic agent for AIH in clinical practice.


Assuntos
Microbioma Gastrointestinal , Hepatite Autoimune , Simbióticos , Animais , Camundongos , NF-kappa B/genética , Lipopolissacarídeos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Receptor 4 Toll-Like/genética , Disbiose/tratamento farmacológico , Prednisona/farmacologia , Filogenia , Transdução de Sinais , Inflamação
5.
Int Immunopharmacol ; 117: 109924, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36848791

RESUMO

Obesity, an increasingly prevalent disease worldwide, is accompanied by chronic inflammation and intestinal dysbiosis. Helminth infections have been increasingly proved to exhibit a protective role in several inflammation-associated diseases. Considering the side effects of live parasite therapy, efforts have been made to develop helminth-derived antigens as promising candidates with fewer adverse effects. This study aimed to evaluate the effect and mechanisms of TsAg (T. spiralis-derived antigens) on obesity and the associated inflammation in high-fat diet (HFD)-fed mice. C57BL/6J mice were fed a normal diet or HFD with or without TsAg treatment. The results reported that TsAg treatment alleviated body weight gain and chronic inflammation induced by HFD. In the adipose tissue, TsAg treatment prevented macrophage infiltration, reduced the expression of Th1-type (IFN-γ) and Th17-type (IL-17A) cytokines while upregulating the production of Th2-type (IL-4) cytokines. Furthermore, TsAg treatment enhanced brown adipose tissue activation and energy and lipid metabolism and reduced intestinal dysbiosis, intestinal barrier permeability and LPS/TLR4 axis inflammation. Finally, the protective role of TsAg against obesity was transmissible via the fecal microbiota transplantation approach. For the first time, our findings showed that TsAg alleviated HFD-induced obesity and inflammation via modulation of the gut microbiota and balancing the immune disorders, suggesting that TsAg might be a safer promising therapeutic strategy for obesity.


Assuntos
Dieta Hiperlipídica , Trichinella spiralis , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Disbiose/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Inflamação/tratamento farmacológico , Inflamação/complicações , Citocinas/uso terapêutico
6.
Mol Nutr Food Res ; 67(7): e2200428, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36708241

RESUMO

SCOPE: Changes in the intestinal flora are related to autoimmune hepatitis (AIH) development. The aim of this study is to investigate the synergistic effects of probiotics and prebiotics on liver injury induced by concanavalin A (Con A). METHODS AND RESULTS: C57BL/6 mice are fed probiotics (Pro), prebiotics (Pre), synbiotic (Syn) for 7 days and then Con A is injected via tail veins to induce AIH. Additionally, methylprednisolone (MP) is gavaged 0.5 h after the Con A injection. It is found that both Pro, Pre, Syn, and MP decrease the levels of serum transaminase, liver F4/80+ macrophage cells, and hepatocellular apoptosis. Pro, Pre, and Syn decrease proinflammatory cytokines, elevate levels of anti-inflammatory as well as restored immune imbalance in AIH. Besides, Pro, Pre, and Syn not only reshape the perturbed gut microbiota, but also maintain intestinal barrier integrity, block the activation of lipopolysaccharide (LPS)/TLR4/NF-κB pathway in the liver. Interestingly, the effects of Syn are superior to Pro or Pre alone in Con A-induced acute liver injury. CONCLUSIONS: Syn obviously facilitates AIH remission. The combined use of Pro and Pre is effective in improving Pro and Pre efficacy and can be an important tool for preventing and adjuvant treating patients for AIH.


Assuntos
Microbioma Gastrointestinal , Hepatite Autoimune , Simbióticos , Animais , Camundongos , Hepatite Autoimune/etiologia , Concanavalina A/farmacologia , Camundongos Endogâmicos C57BL , Fígado , Prebióticos
7.
Probiotics Antimicrob Proteins ; 15(1): 185-201, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36456838

RESUMO

Alcoholic liver disease (ALD) is a worldwide health threaten lack of effective treatment. Gut dysbiosis and concomitant augmented intestinal permeability are strongly implicated in the pathogenesis and progression of ALD. Research on the protective effect of probiotics on ALD is limited, and more effective intestinal microecological regulators and the related mechanisms still need to be further explored. In the present study, the protective effects and mechanisms of a compound probiotic against acute alcohol-induced liver injury in vivo were explod. It was showed that the compound probiotic ameliorated liver injury in acute ALD mice and stabilized the levels of ALT, AST, and TG in serum. The compound probiotic reversed acute alcohol-induced gut dysbiosis and maintained the intestinal barrier integrity by upregulating the production of mucus and the expression of tight junction (TJ) proteins and thus reduced LPS level in liver. Meanwhile, the compound probiotic reduced inflammation level by inhibiting TLR4/NF-κB signaling pathway and suppressed oxidative stress level in liver. Furthermore, the compound probiotic alleviated liver lipid accumulation by regulating fatty acid metabolism-associated genes and AMPK-PPARα signaling pathway. Noteworthy, fecal microbiota transplantation (FMT) realized comparable protective effect with that of compound probiotic. In conclusion, present study demonstrates the beneficial effects and underlying mechanism of the compound probiotic against acute alcohol-induced liver injury. It provides clues for development of novel strategy for treatment of ALD.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Probióticos , Camundongos , Animais , Disbiose/terapia , Doença Hepática Crônica Induzida por Substâncias e Drogas/complicações , Hepatopatias Alcoólicas/tratamento farmacológico , Etanol
8.
Front Vet Sci ; 9: 897740, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711811

RESUMO

Canine distemper (CD) caused by canine distemper virus (CDV) is one of the major infectious diseases in minks, bringing serious economic losses to the mink breeding industry. By an integrated analysis of microRNA (miRNA)-messenger RNA (mRNA), the present study analyzed the changes in the mink transcriptome upon CDV infection in mink lung epithelial cells (Mv. l. Lu cells) for the first time. A total of 4,734 differentially expressed mRNAs (2,691 upregulated and 2,043 downregulated) with |log2(FoldChange) |>1 and P-adj<0.05 and 181 differentially expressed miRNAs (152 upregulated and 29 downregulated) with |log2(FoldChange) |>2 and P-adj<0.05 were identified. Gene Ontology (GO) enrichment indicated that differentially expressed genes (DEGs) were associated with various biological processes and molecular function, such as response to stimulus, cell communication, signaling, cytokine activity, transmembrane signaling receptor activity and signaling receptor activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the combination of miRNA and mRNA was done for immune and inflammatory responses, such as Janus kinase (JAK)-signal transducer and activator (STAT) signaling pathway and nuclear factor (NF)-kappa B signaling pathway. The enrichment analysis of target mRNA of differentially expressed miRNA revealed that mir-140-5p and mir-378-12 targeted corresponding genes to regulate NF-kappa B signaling pathway. JAK-STAT signaling pathway could be modulated by mir-425-2, mir-139-4, mir-140-6, mir-145-3, mir-140-5p and mir-204-2. This study compared the influence of miRNA-mRNA expression in Mv. l. Lu cells before and after CDV infection by integrated analysis of miRNA-mRNA and analyzed the complex network interaction between virus and host cells. The results can help understand the molecular mechanism of the natural immune response induced by CDV infection in host cells.

9.
Pharmacol Res ; 175: 106020, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896249

RESUMO

Obesity associated with low-grade chronic inflammation and intestinal dysbiosis is considered as a worldwide public health crisis. In the meanwhile, different probiotics have demonstrated beneficial effects on this condition, thus increasing the interest in the development of probiotic treatments. In this context, the aim of this study is to investigate the anti-obesity effects of potential probiotic Lactobacillus acidophilus isolated from the porcine gut. Then, it is found that L. acidophilus reduces body weight, fat mass, inflammation and insulin resistance in mice fed with a high-fat diet (HFD), accompanied by activation in brown adipose tissue (BAT) as well as improvements of energy, glucose and lipid metabolism. Besides, our data indicate that L. acidophilus not only reverses HFD-induced gut dysbiosis, as indicated by the decreased Firmicutes-to-Bacteroidetes ratios and endotoxin bearing Gram-negative bacteria levels, but also maintains intestinal barrier integrity, reduces metabolic endotoxemia, and inhibits the TLR4 / NF- κB signaling pathway. In addition, the results of microbiome phenotype prediction by BugBase and bacterial functional potential prediction using PICRUSt show that L. acidophilus treatment improves the gut microbiota functions involving metabolism, immune response, and pathopoiesia. Furthermore, the anti-obesity effect is transmissible via horizontal faeces transfer from L. acidophilus-treated mice to HFD-fed mice. According to our data, it is seen that L. acidophilus could be a good candidate for probiotic of ameliorating obesity and associated diseases such as hyperlipidemia, nonalcoholic fatty liver diseases, and insulin resistance through its anti-inflammatory properties and alleviation of endothelial dysfunction and gut dysbiosis.


Assuntos
Lactobacillus acidophilus , Obesidade/terapia , Probióticos/uso terapêutico , Tecido Adiposo Marrom , Animais , Endotoxemia/terapia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Expressão Gênica , Resistência à Insulina , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos/genética , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/microbiologia , Permeabilidade
10.
J Nutr Biochem ; 98: 108863, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34517094

RESUMO

Autoimmune hepatitis (AIH) is an immune-mediated type of chronic liver inflammation accompanied by intestinal flora imbalance. Probiotics have been reported to ameliorate imbalances in the intestinal flora. This study aimed to investigate the effects of compound probiotic in the AIH mouse model. AIH mice were gavaged with compound probiotic and injected intraperitoneally with dexamethasone (dex) for 42 days. The results showed that these treatments suppressed hepatic inflammatory cell infiltration, serum transaminase, and Th1 and Th17 cells. However, Treg cells were increased only in the probiotics group, which indicates an immunomodulatory role of the compound probiotic. The compound probiotic maintained intestinal barrier integrity, blocked lipopolysaccharide (LPS) translocation, and inhibited the activation of the TLR4/NF-κB pathway and the production of inflammatory factors in the liver and ileum. Moreover, the compound probiotic treatment increased the abundance of beneficial bacteria and reduced the abundance of potentially harmful bacteria in gut. Compound probiotic may improve ileal barrier function while increasing the diversity of the intestinal flora, blocking the translocation of gut-derived LPS to the liver and therefore preventing activation of the TLR4/NF-κB pathway. The resulting inhibition of pro-inflammatory factor production facilitates AIH remission.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Hepatite Autoimune/tratamento farmacológico , Mucosa Intestinal/metabolismo , Probióticos/farmacologia , Animais , Bifidobacterium , Citocinas/metabolismo , Fezes/microbiologia , Hepatite Autoimune/metabolismo , Íleo/metabolismo , Inflamação/metabolismo , Lactobacillus , Lipopolissacarídeos/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Permeabilidade/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
11.
BMC Microbiol ; 20(1): 234, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738897

RESUMO

BACKGROUND: Aleutian mink disease parvovirus (AMDV) causes Aleutian mink disease (AMD), which is a serious infectious disease of mink. The aim of this study was to get a better understanding of the molecular epidemiology of AMDV in northeast China to control and prevent AMD from further spreading. This study for the first time isolated AMDV from fecal swab samples of mink in China. RESULTS: A total of 157/291 (54.0%) of the fecal swab samples were positive for AMDV. Of these, 23 AMDV positive samples were randomly selected for sequence alignment and phylogenetic analysis based on the acquired partial fragments of VP2 gene with the hypervariable region. Comparative DNA sequence analysis of 23 AMDV isolates with a reference nonpathogenic (AMDV-G) strain revealed 8.3% difference in partial VP2 nucleotide sequences. Amino acid alignment indicated the presence of several genetic variants, as well as one single amino acid residue deletion. The most concentrated area of variation was located in the hypervariable region of VP2 protein. According to phylogenetic analysis, the Chinese AMDV strains and the other reference AMDV strains from different countries clustered into three groups (clades A, B and C). Most of the newly sequenced strains were found to form a Chinese-specific group, which solely consisted of Chinese AMDV strains. CONCLUSION: These findings indicated that a high genetic diversity was found in Chinese AMDV strains and the virus distribution were not dependent on geographical origin. Both local and imported AMDV positive species were prevalent in the Chinese mink farming population. The genetic evidence of AMDV variety and epidemic isolates have importance in mink farming practice.


Assuntos
Vírus da Doença Aleutiana do Vison/genética , Doença Aleutiana do Vison/epidemiologia , Fezes/virologia , Doença Aleutiana do Vison/virologia , Vírus da Doença Aleutiana do Vison/classificação , Vírus da Doença Aleutiana do Vison/isolamento & purificação , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas do Capsídeo/genética , China/epidemiologia , DNA Viral/genética , Variação Genética , Vison , Epidemiologia Molecular , Filogenia , Alinhamento de Sequência
12.
Artigo em Inglês | MEDLINE | ID: mdl-31069178

RESUMO

Trichinella spiralis is a major food-borne parasite worldwide. Trichinellosis caused by T. spiralis is not only a public health problem, but also an economic hazard in food safety. The development of effective vaccines to prevent Trichinella infection in domestic animals and humans is urgently needed for controlling of this zoonosis. Fructose-1, 6-bisphosphate aldolase (FBPA) is involved in energy production in glycolysis and is also associated with many non-glycolysis functions in the parasite, such as adhesion to host cells, plasminogen binding, and invasion. FBPA has been considered as a potential vaccine candidate or as a target for chemotherapeutic treatment. Here, we report for the first time the characterization of FBPA of T. spiralis and an evaluation of its potential as a vaccine candidate antigen against T. spiralis infection in mice. The results of qPCR and western blot analysis showed that the Ts-FBPA gene was expressed at various developmental stages of T. spiralis and was also detected in excretory-secretory products (ES) of T. spiralis muscle larvae (ML). Immunostaining with anti-Ts-FBPA mouse sera indicated that it localized principally to the surface and embryos of this parasitic nematode. Vaccination of mice with recombinant Ts-FBPA (rTs-FBPA) resulted in a Th1/Th2 mixed humoral and cellular immune response with Th2 predominant, as well as remarkably elevated IgE levels. Moreover, mice vaccinated with rTs-FBPA displayed a 48.7% reduction in adult worm burden and 52.5% reduction in muscle larval burden. These studies indicated that Ts-FBPA is a promising target for developing an effective vaccine to prevent and control Trichinella infection.


Assuntos
Antígenos de Helmintos/genética , Antígenos de Helmintos/imunologia , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/imunologia , Trichinella spiralis/enzimologia , Triquinelose/prevenção & controle , Vacinas Sintéticas/imunologia , Animais , Anticorpos Anti-Helmínticos/sangue , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Camundongos , Células Th1/imunologia , Células Th2/imunologia , Trichinella spiralis/genética , Vacinas Sintéticas/administração & dosagem
13.
BMC Vet Res ; 15(1): 141, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31077252

RESUMO

BACKGROUND: Canine parvovirus (CPV) and feline parvovirus (FPV) are causative agents of diarrhea in dogs and cats, which manifests as depression, vomiting, fever, loss of appetite, leucopenia, and diarrhea in young animals. CPV and FPV can single or mixed infect cats and cause disease. To diagnose sick animals effectively, an effective virus diagnostic and genome typing method with high sensitivity and specificity is required. RESULTS: In this study, a conserved segment containing one SNP A4408C of parvovirus was used for real-time PCR amplification. Subsequently, data were auto-analyzed and plotted using Applied Biosystems® High Resolution Melt Software v3.1. Results showed that CPV and FPV can be detected simultaneously in a single PCR reaction. No cross-reactions were observed with canine adenovirus, canine coronavirus, and canine distemper virus. The assay had a detection limit of 4.2 genome copies of CPV and FPV. A total of 80 clinical samples were subjected to this assay, as well as to conventional PCR-sequence assay and virus isolation. Results showed that the percentage of agreement of the assay and other methods are high. CONCLUSIONS: In short, we have developed a diagnostic test for the accurate detection and differentiation of CPV and FPV in fecal samples, which is also cost effective.


Assuntos
Vírus da Panleucopenia Felina/classificação , Técnicas de Diagnóstico Molecular/veterinária , Infecções por Parvoviridae/veterinária , Parvovirus Canino/classificação , Vírus da Panleucopenia Felina/genética , Desnaturação de Ácido Nucleico , Infecções por Parvoviridae/diagnóstico , Infecções por Parvoviridae/virologia , Parvovirus Canino/genética , Temperatura de Transição
14.
Virus Res ; 257: 52-56, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30213628

RESUMO

The highly contagious canine distemper virus (CDV) is a non-segmented single-stranded negative-sense RNA virus, which belongs to the Morbillivirus genus of the Paramyxoviridae family. The phosphoprotein (P) of CDV plays the important role in the virus replication and pathogenesis. In this study, we characterized four monoclonal antibodies (MAbs), designated as Pc7, Pc8, Pc11 and Pc25 MAbs against the P protein of CDV-PS strain. A series of overlapping P protein-derived peptides representing the CDV-PS phosphoprotein (aa232-507) were screened to identify linear peptide epitopes recognized by each MAb. Finally, four epitopes, 238SHGMGIVAGSTN249 (E2-9), 264GPSVSAENVRQ274 (E6-2), 390INPELRPIIGR400 (E27-2) and 252TQSALKSTG260 (E4-9), are minimal linear epitopes recognized by the Pc7, Pc8, Pc11 and Pc25 MAbs, respectively. Each identified B-cell epitope was able to be recognized by CDV positive dog serum. Alignment analysis of the amino acid sequences indicated that the linear B-cell epitope of the Pc11 MAb is relatively conserved among different CDV strains, but the linear B-cell epitopes recognized by Pc7, Pc8 and Pc25 MAbs are not conserved among CDV strains. Our results revealed that the E27-2 peptide might be a common B-cell binding epitope of CDV antibodies. These findings may provide a useful basis for the development of new diagnostic assays for CDV.


Assuntos
Anticorpos Monoclonais/química , Vírus da Cinomose Canina/química , Epitopos de Linfócito B/química , Fosfoproteínas/química , Proteínas Virais/química , Animais , Anticorpos Antivirais/química , Chlorocebus aethiops , Cães , Mapeamento de Epitopos , Proteínas Recombinantes/química , Alinhamento de Sequência , Análise de Sequência de Proteína , Células Vero
15.
Sci Rep ; 8(1): 8393, 2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29849073

RESUMO

Broad coverage of mink enteritis virus (MEV) vaccination program in northeast of China has provided effective protection from mink viral enteritis. Nevertheless, MEV vaccine failures were reported due to continually evolving and changing virulence of field variants or wild-type MEV. In this study, a combined loop-mediated isothermal amplification (LAMP) and single nucleotide polymorphism (SNP) method, named LAMP-SNP assay, was developed for detection and differentiation of wild-type and vaccine strains of MEV. Four primers in MEV-VP2-LAMP were used to detect both wild-type and vaccine strains of MEV in our previous publication, and other four primers in LAMP-SNP were designed to amplify the NS1 gene in wild-type MEV and only used to detect wild-type viruses. The LAMP-SNP assay was performed in a water bath held at a constant temperature of 65 °C for 60 min. LAMP-SNP amplification can be judged by both electrophoresis and visual assessment with the unaided eyes. In comparison with virus isolation as the gold standard in testing 171 mink samples, the percentage of agreement and relative sensitivity and specificity of the LAMP-SNP assay were 97.1, 100%, and 94.0%, respectively. There were no cross-reactions with other mink viruses. The LAMP-SNP assay was found to be a rapid, reliable and low-cost method to differentiate MEV vaccine and field variant strains.


Assuntos
Vírus da Enterite do Vison/genética , Vírus da Enterite do Vison/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico , Polimorfismo de Nucleotídeo Único , Vacinas Virais/imunologia , Animais , Limite de Detecção , Vírus da Enterite do Vison/imunologia , Fatores de Tempo
16.
Mol Cell Probes ; 38: 7-12, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29499233

RESUMO

Canine parvovirus (CPV) is an important pathogen in domestic dogs, and the original antigenic types CPV-2 and its variants, CPV-2a, 2b and 2c, are prevalent worldwide. A multiplex TaqMan real-time PCR method was developed for the detection and differentiation of four antigenic types of CPV. A set of primers and probes, CPV-305F/CPV-305R and CPV-2-305P (for CPV-2)/CPV-2a-305P (for CPV-2a, 2b and 2c), was able to differentiate CPV-2 and its variants (CPV-2a, 2b and 2c). Another set of primers and probes, CPV-426F/CPV-426R and CPV-2-426P (for CPV-2 and 2a)/CPV-2b-426P (for CPV-2b)/CPV-2c-426P (for CPV-2c), was able to differentiate CPV-2a (2), CPV-2b, and CPV-2c. With these primers and probes, the multiplex TaqMan real-time PCR assay detected effectively and differentiated CPV-2, 2a, 2b and 2c by two separate real-time PCRs. No cross reactivity was observed with canine distemper virus, canine adenovirus, and canine coronavirus. The detection limit of the assay is 101 genome copies/µL for CPV-2, CPV-2a, CPV-2b, and 102 copies/µL for CPV-2c. The multiplex real-time PCR has 100% agreement with DNA sequencing. We provide a sensitive assay that simultaneously detects and differentiate four antigenic types of CPV and the method was also used for quantification of CPVs viral genome.


Assuntos
Antígenos Virais/análise , Parvovirus Canino/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , China , Cães , Limite de Detecção , Padrões de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Sequência de DNA
17.
Virol J ; 14(1): 187, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28962633

RESUMO

BACKGROUND: The Nucleoprotein (NP) is the most abundant and highly immunogenic protein in canine distemper virus (CDV), playing an important role in CDV viral replication and assembly. RESULTS: In this study, a specific monoclonal antibody, named C8, was produced against the NP protein C terminal (amino acids 401-523). A linear N protein epitope was identified by subjecting a series of partially overlapping synthesized peptides to enzyme-linked immunosorbent assay (ELISA) analysis.The results indicated that 444GDKYPIHFNDER455 was the minimal linear epitope that could be recognized by mAb C8. Sequence alignments demonstrated that this linear epitope is less conserved among three CDV genotypes. We next analyzed the level of conservation of the defined epitope in19 Chinese CDV clinical isolates, and it has one site variation in amino acid among these CDV isolations. 2 isolates have the amino acid mutations F451L, while one has P448Ssubstitution.Phylogenetic analysis showed the two isolates with F451Lsubstitution had a closer relationship in a virulent strain ZJ-7, so the epitope may be a significant tag associated with virus virulence. CONCLUSION: This collection of mAb along with defined linear epitope may provide useful reagents for investigations of NP protein function and the development of CDV specific diagnostics.


Assuntos
Anticorpos Monoclonais/imunologia , Vírus da Cinomose Canina/imunologia , Epitopos de Linfócito B/imunologia , Nucleoproteínas/imunologia , Domínios e Motivos de Interação entre Proteínas/imunologia , Proteínas Virais/imunologia , Motivos de Aminoácidos , Animais , Especificidade de Anticorpos/imunologia , Chlorocebus aethiops , Clonagem Molecular , Vírus da Cinomose Canina/classificação , Vírus da Cinomose Canina/genética , Cães , Epitopos de Linfócito B/química , Expressão Gênica , Camundongos , Nucleoproteínas/química , Nucleoproteínas/genética , Filogenia , Conformação Proteica , Proteínas Recombinantes , Análise de Sequência de DNA , Células Vero , Proteínas Virais/química , Proteínas Virais/genética
18.
Front Microbiol ; 8: 2564, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29312244

RESUMO

Canine distemper virus (CDV), a paramyxovirus, causes a severe highly contagious lethal disease in carnivores, such as mink. Mink lung epithelial cells (Mv.1.Lu cells) are sensitive to CDV infection and are homologous to the natural host system of mink. The current study analyzed the response of Mv.1.Lu cells to CDV infection by iTRAQ combined with LC-MS/MS. In total, 151 and 369 differentially expressed proteins (DEPs) were markedly up-regulated or down-regulated, respectively. Thirteen DEPs were validated via real-time RT-PCR or western blot analysis. Network and KEGG pathway analyses revealed several regulated proteins associated with the NF-κB signaling pathway. Further validation was performed by western blot analysis and immunofluorescence assay, which demonstrated that different CDV strains induced NF-κB P65 phosphorylation and nuclear translocation. Moreover, the results provided interesting information that some identified DEPs possibly associated with the pathogenesis and the immune response upon CDV infection. This study is the first overview of the responses to CDV infection in Mv.1.Lu cells, and the findings will help to analyze further aspects of the molecular mechanisms involved in viral pathogenesis and the immune responses upon CDV infection.

19.
Front Microbiol ; 8: 2674, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375535

RESUMO

Lysine acetylation is a dynamic and highly conserved post-translational modification that plays a critical role in regulating diverse cellular processes. Trichinella spiralis is a foodborne parasite with a considerable socio-economic impact. However, to date, little is known regarding the role of lysine acetylation in this parasitic nematode. In this study, we utilized a proteomic approach involving anti-acetyl lysine-based enrichment and highly sensitive mass spectrometry to identify the global acetylated proteome and investigate lysine acetylation in T. spiralis. In total, 3872 lysine modification sites were identified in 1592 proteins that are involved in a wide variety of biological processes. Consistent with the results of previous studies, a large number of the acetylated proteins appear to be involved in metabolic and biosynthetic processes. Interestingly, according to the functional enrichment analysis, 29 acetylated proteins were associated with phagocytosis, suggesting an important role of lysine acetylation in this process. Among the identified proteins, 15 putative acetylation motifs were detected. The presence of serine downstream of the lysine acetylation site was commonly observed in the regions surrounding the sites. Moreover, protein interaction network analysis revealed that various interactions are regulated by protein acetylation. These data represent the first report of the acetylome of T. spiralis and provide an important resource for further explorations of the role of lysine acetylation in this foodborne pathogen.

20.
Immunol Lett ; 178: 50-60, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27481482

RESUMO

TLR8 is an important sensor of single-stranded RNA (ssRNA) from the viral genome and plays an essential role in innate antiviral responses via the recognition of conserved viral molecular patterns. In this report, TLR8 in the Chinese raccoon dog was characterized and analyzed for the first time. The full-length sequence of raccoon dog TLR8 (RdTLR8) cDNA was cloned by rapid amplification of cDNA ends (RACE) and is 3191bp with a 3117-bp open reading frame (ORF) encoding 1038 amino acids. The putative protein exhibits typical features of the TLR families, with 19 leucine-rich repeats (LRRs) in the extracellular domain and a cytoplasmic TIR domain. Comparative analyses of the RdTLR8 amino acid sequence indicated a 73.6-99.4% sequence identity with dog, horse, pig, sheep, cattle, human and mouse TLR8. Phylogenetic analysis grouped 71 mammalian TLR proteins into five sub-families, wherein RdTLR8 was clustered into a monophyletic TLR8 clade in the TLR9 family, which was completely coincident with the evolutionary relationship among mammals. Quantitative real-time PCR analysis revealed extensive expression of RdTLR8 in tissues from healthy Chinese raccoon dogs with the highest expression in the peripheral blood mononuclear cells (PBMCs) and the lowest expression in the skeletal muscle. HEK293 cells cotransfected with a RdTLR8 expression plasmid and an NF-κB-luciferase reporter plasmid significantly responded to the agonist 3M-002, indicating a functional TLR8 homolog. In addition, raccoon dog PBMCs exposed to the canine distemper virus (CDV) wild strain CDV-PS and the TLR8 agonist 3M-002 showed significant upregulation of RdTLR8 mRNA and proinflammatory cytokines TNF-α and IFN-α, suggesting that RdTLR8 might play an important role in the immune response to viral infections in the Chinese raccoon dog.


Assuntos
Cães Guaxinins/genética , Receptor 8 Toll-Like/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Clonagem Molecular , Sequência Consenso , Citocinas/genética , Citocinas/metabolismo , DNA Complementar , Expressão Gênica , Humanos , Imidazóis/farmacologia , Mediadores da Inflamação/metabolismo , Leucócitos Mononucleares/metabolismo , Modelos Moleculares , NF-kappa B/metabolismo , Motivos de Nucleotídeos , Filogenia , Conformação Proteica , Quinolinas/farmacologia , Cães Guaxinins/metabolismo , Análise de Sequência de DNA , Baço/metabolismo , Receptor 8 Toll-Like/agonistas , Receptor 8 Toll-Like/química , Receptor 8 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...